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1. COMPARISON OF COHERENT AND INCOHERENT-PROJECTION SIM

Sinusoidal SIM using a DMD and incoherent projection has previously been realized [1], but while
this technique has the same theoretical resolution as coherent SIM, its resolution in the presence of
noise degrades much more rapidly. The achievable signal in incoherent projection SIM is smaller
than coherent SIM by a factor of the optical transfer function at the SIM frequency, H(fo). Because
the experimental resolution limit of SIM is set by the signal-to-noise ratio (SNR) in the image,
coherent SIM has a tremendous advantage over incoherent projection techniques. Achieving
comparable results with incoherent projection SIM requires at least one order of magnitude more
optical power for realistic SIM frequencies, making it much less efficient with its photon budget
and leading to higher photobleaching and phototoxicity.
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Fig. S1. Comparison of coherent and incoherent SIM versus SNR. A. Simulated raw image
for one angle and phase combination using coherent SIM. The moiré pattern features are
clearly visible. The SNR in this image is the same as in G. B. Reconstructed SIM image cor-
responding to the raw data in A. C. Simulated raw image for one angle and phase combination
using incoherent SIM. The moiré pattern is too weak to be seen by eye. The SNR in this im-
ages is the same as in G. D. Reconstructed SIM image corresponding to the raw data in C. E.
Line cut illustrating coherent (magenta) and incoherent (yellow) SIM for fixed net intensity at
the sample and SNR ∼30, corresponding to peak photon number of ∼1000 photons per pixel.
Lines with spacings ranging from 90 nm to 180 nm are shown. At this SNR, the largest three
line pairs are resolved by coherent SIM, but not by incoherent SIM. F. SNR ∼100. Coherent SIM
clearly resolves the first three peaks. Incoherent SIM resolves the first peak, but with worse con-
trast that coherent SIM. G. SNR ∼300. Coherent SIM resolves all four peaks, while incoherent
SIM resolves only the first three but with significantly less contrast. H. SNR ∼1000. Despite
increased signal to noise, the reconstructed SIM images are similar to G. Increasing signal to
noise further has only a marginal effect.

Coherent SIM relies on interfering two beams which pass near the edge of the objective pupil.
Assuming an ideal optical transfer function, these beams are not attenuated by the OTF, leading
to a sinusoidal intensity pattern with full contrast (m = 1),

Isample
c = Io [1 + cos (2πfo · r + φ)] . (S1)

Incoherent SIM, on the other hand, relies on forming an image of a sinusoidal intensity pattern,
and the strength of the modulation is degraded by the optical transfer function

Isample
i = Io [1 + H(fo) cos (2πfo · r + φ)] , (S2)

implying the modulation depth can be at most m = H(fo).
The practical resolution of a SIM measurement is set by the SNR, and the strength of the signal

containing superresolution information is determined by Iom. For fixed intensity Io, achieving the
same Iom value requires a factor of 1/H(fo) power in the incoherent case. This lower efficiency
also leads to enhanced photobleaching and phototoxicity.

Assuming an ideal optical transfer function, setting the SIM pattern at 80 % of the band pass
limits the incoherent projection m < 0.1. Increasing the SIM frequency further to achieve the full
SIM theoretical resolution limit causes the modulation to rapidly deteriorate. Setting the SIM
pattern at 95 % of the band pass limits m < 0.01, implying that coherent SIM can achieve SNR’s
a factor of 100× larger than with an equivalent incoherent system. This value is similar to that
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chosen in [2], an experiment that would not have been possible using an incoherent projection
SIM.

These numbers provide a lower bound on the SNR advantage coherent SIM has over incoherent
projection because experimental optical transfer functions typically decay faster than the ideal
OTF. The experimental OTF we obtained in section 3.1 implies m < 0.02 and 0.002 at 80 % and
95 % of the theoretical band pass, respectively.

To illustrate the effect this difference has on the image quality, we simulated SIM raw images
and reconstructions of the same line pairs discussed in Supplemental Note 13. We summarize
the results in Fig. S1. We find that coherent SIM resolves smaller line pairs and thus achieves
significantly better resolution than incoherent SIM at all SNR values we consider (Fig. S1E-H). As
expected, the weaker modulation in the incoherent case leads to a visibly weaker moiré pattern
in the raw SIM images (Fig. S1A,C).

2. GENERAL CLOSED-FORM SOLUTION OF THE BLAZE AND DIFFRACTION CONDI-
TIONS
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Fig. S2. Blaze and diffraction condition solution contours. A. Output diffraction angles
parameterized by the unit vector components bx and by for “on” mirrors and 465 nm for
n = 1, ..., 4 (blue) and 635 nm for n = 1, ..., 3 (red), and solutions for “off” mirrors and 532 nm
for n = −4, ...,−1 (green) and 405 nm for n = −5, ...,−1 (purple). The shapes with smaller
radii correspond to the higher diffraction orders. The black line indicates the θx = −θy direc-
tion, and the black dots indicate the 3- and 4-color solutions discussed in the text. B. Diffraction
output angle data from A. parameterized by θx and θy.

Here we present a closed form solution to the combined blaze and diffraction problem, which
removes any need to perform numerical simulations to determine appropriate input/output
angles and diffraction orders for determining optimal points for multicolor operation. Further,
it allows us to answer various useful questions which have not previously been addressed,
including which diffraction orders can be overlapped with the blaze condition in principle.

To find a joint solution to the blaze and diffraction conditions, it is convenient to work directly
with the incoming and outgoing unit vectors â and b̂ as opposed to parameterizing these by angles,
which corresponds to working with the direction cosines [3]. However, for later convenience we
also introduce an angular parameterization following [4],

â =
(
tan θa

nn̂ + tan θa
n⊥ n̂⊥ + ẑ

)
/
√

tan2 θa
n + tan2 θa

n⊥ + 1 (S3)

b̂ =
(

tan θb
nn̂ + tan θb

n⊥ n̂⊥ − ẑ
)

/
√

tan2 θb
n + tan2 θb

n⊥ + 1 (S4)

where we most often consider the bases n̂, n̂⊥ = x̂, ŷ and n̂, n̂⊥ = (x̂− ŷ)/
√

2, (x̂ + ŷ)/
√

2. θn is
the angle between the n̂ axis and the unit vector â or b̂ projected onto the n̂⊥ − ẑ plane.
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Now, we exploit the fact that the blaze condition is synonymous with the law of reflection
being satisfied on a single micromirror. To more easily evaluate this condition, we adopt the basis

ê1 =
1√
2
(x̂− ŷ) cos γ− ẑ sin γ (S5)

ê2 =
1√
2
(x̂ + ŷ) (S6)

ê3 =
1√
2
(x̂− ŷ) sin γ + ẑ cos γ, (S7)

which is chosen such that ê3 is the micromirror normal. In this basis, the blaze condition is

a1 − b1 = 0 (S8)

a2 − b2 = 0 (S9)

a3 + b3 = 0, (S10)

which is equivalent to A±(γ, â− b̂) = 0.
The general diffraction condition occurs when the exponentials in eq. 1 of the main text all

enter with the same phase, and can be written

ax − bx =
λ

d
nx (S11)

ay − by =
λ

d
ny, (S12)

which in the new basis becomes

(a1 − b1)
cos γ√

2
+ (a2 − b2)

1√
2
+ (a3 − b3)

sin γ√
2

=
λ

d
nx (S13)

−(a1 − b1)
cos γ√

2
+ (a2 − b2)

1√
2
− (a3 − b3)

sin γ√
2

=
λ

d
ny. (S14)

Adding and subtracting these two equations, we find

a2 − b2 =
λ√
2d

(nx + ny) (S15)

(a2 − b2) cos γ + (a3 − b3) sin γ =
λ√
2d

(nx − ny) (S16)

Inserting eqs. S8–S10, we find that the blaze condition and diffraction conditions can only be
satisfied together for n = nx = −ny, and in this case

a3 =
1√

2 sin γ

λ

d
n (S17)

a2 = ±
√

1− a2
3 − a2

1 (S18)

a1 ∈
[
−
√

1− a2
3,
√

1− a2
3

]
, (S19)

and two numbers, n and a1 completely specify the solution. Further the condition 0 < a3 ≤ 1
implies this equation can only be satisfied for a finite number of n,

n =

{
1, ..., b d

λ

√
2 sin γc if γ < 0

d− d
λ

√
2 sin γe, ..., −1 if γ > 0,

(S20)

where b·c and d·e are the floor and ceiling functions respectively.
For any solution, we can convert eqs. S17–S19 back to the x̂, ŷ, ẑ basis using eqs. S5–S7. We

explicitly perform this substitution for the case of most interest, ax = −ay (θx = −θy), which
implies a2 = 0. Therefore,
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â =
x̂− ŷ√

2
sin(α + γ) + ẑ cos(α + γ) (S21)

b̂ =
x̂− ŷ√

2
sin(α− γ)− ẑ cos(α− γ) (S22)

where

cos α =
1√

2 sin γ

λ

d
n (S23)

or, writing in terms of the parameterization eq. S3–S4 for (x̂− ŷ)/
√

2, (x̂ + ŷ)/
√

2, ẑ,

θa
x−y = α + γ (S24)

θb
x−y = α− γ, (S25)

which gives two explicit solutions for the input and output angles in terms of only n and γ, one
for each solution to eq. S23.

For multicolor operation, we must solve eqs. S17–S19 for multiple wavelengths, λ1, ..., λn
subject to the condition b̂1 = b̂2 = ... = b̂n. We see from these equations that for fixed value of γ
this requires λ1n1 = ... = λnnn, which can be solved using the algorithm described in the main
text. The only continuously tuneable parameters here are the wavelengths, which is undesirable
because wavelength choices will often be dictated by choice of fluorophore, existing equipment,
or available laser sources.

On the other hand, we can generically find a solution for two colors using the “on” and
“off” mirror states of the DMD by tuning the input angles. In this case, let the wavelength and
diffraction order for the “on” (“off”) mirrors be λp and np (λm and nm). Suppose γ = γon = −γoff.
Then b̂p = b̂m gives the quadratic equation

bz =
1

2
√

2 sin γ cos γ

−λpnp + λmnm

d
(S26)

b2
x + bx

(
λpnp + λmnm

2 sin2 γd

)
= −1

2

[
b2

z +

(
λpnp + λnnm

2 sin2 γd

)2
− 1

]
(S27)

which can be satisfied by tuning the input angles.
To develop a three-color solution for 465 nm, 635 nm, and 532 nm, we apply both approaches

described above. First, we take advantage of 465× 4 ≈ 635× 3 to nearly overlap these diffraction
orders. Somewhat closer overlap between the red and blue diffraction orders can be obtained if
473 nm is used instead of 465 nm. Next, we take advantage of the n = −4 diffraction order of the
532 nm light using the “off” state mirrors. Eqs. S26 and S27 show the 465 nm and 532 nm outputs
overlap at the out-of-plane position (bx, by) = (0.399, 0.011), which is (θb

x, θb
y) ∼ (23.49°,−0.72°).

A similar observation has been made in [5], but without the benefit of a closed form solution.
Four-color operation can be realized using a similar approach, taking advantage of the near

overlap between the 405 nm -4th and 532 nm -3rd diffraction orders and keeping the 465 nm 4th
and 635 nm 3rd diffraction orders. Here, solving eq. S27 for the overlap of the 532 nm and 465 nm,
we find (bx, by) = (0.177, 0.581) or (θb

x, θb
y) ∼ (12.54°,∼ 36.15°). We illustrate this solution and

the set of all joint solutions of the blaze and diffraction conditions for 405 nm, 465 nm, 532 nm,
and 635 nm in Fig. S2.

These solutions are promising for improved 3- and 4-color operation, but they require a
substantially more complicated mounting structure for the DMD. Because the deviation from
the blaze condition for our chosen 3-color configuration leads to negligible degradation of the
SIM pattern, we believe it is a superior compromise. For achieving 4-color operation, working
with a more complicated experimental configuration may be unavoidable. However, using more
extreme angles poses other problems in the optical setup, in particular the tilt of the DMD may
exceed the depth of field of the first imaging lens (Supplemental Note 9).
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Fig. S3. Model validation Comparison between Fourier peaks measured in the imaging sys-
tem pupil and the DMD and SIM pattern forward models. A. Comparison of measured po-
sitions (colored circles) and theoretical positions (black symbols) for nominal wavelengths
465 nm (left), 532 nm (middle), and 635 nm (right). B. Measured intensity values across the
pupil normalized by the DC value and corrected for the expected diffraction intensity for each
frequency component. C. Theoretical intensity values across the pupil.
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quantity fit value expected value

λ1 464.93 nm 465 nm

b̂1 (0.2524, -0.2584, -0.9325) (0.2557, -0.2557, -0.9323)

λ2 532.70 nm 532 nm

b̂2 (0.2522, -0.2576, -0.9328) (0.2557, -0.2557, -0.9323)

λ3 635.84 nm 635 nm

b̂3 (0.2525, -0.2587, -0.9324) (0.2557, -0.2557, -0.9323)

M 31 001 30 769

θc 50.05° —

p̂ (0.2524, -0.2582, -0.9325) (0.2557, -0.2557, -0.9323)

(cx, cy) (853.9, 1029.4) —

θn 44.47° 45°

dx 7.598 µm 7.56 µm

dy 7.558 µm 7.56 µm

wx 7.598 µm —

wy 7.558 µm —

γon 12.05° 12°

γoff −11.96° −12°

Table S1. DMD parameters determined by non-linear least squares fit.

3. DMD MODEL VALIDATION

To validate the DMD and SIM pattern formation forward models presented in eqs. 1, 5, and 11 of
the main text we measure the light diffracted by the DMD for 360 sinusoidal SIM patterns with
variable frequency, constructed as described in Supplemental Note 6, and compare the resulting
diffraction order positions and intensities to our model. To accomplish this, we place a sCMOS
camera in the Fourier plane following lens L6 (see Supplemental Note 7) and record the intensities
of a number of diffraction peaks for the various DMD patterns using three wavelengths, 465 nm,
532 nm, and 635 nm. We parameterize these peaks by the DMD Fourier frequency, f, which
generates them and perform Gaussian fits to the resulting image to determine their positions,
re

c(f) = (xe
c(f), ye

c(f)) and intensities, Ie(f) on the camera. We compare these intensities and
positions to the expected values based on our forward models.

To perform this comparison, we determine the expected location of the diffraction peaks in
camera coordinates, rc = (xc, yc). We first map the pattern frequencies f = ( fx, fy) to output
angles characterized by the unit vectors b̂(f), which according to eq. 5 are given by

bx,y(f) = bo
x,y +

λ

dx,y
fx,y, (S28)

where the f are expressed in inverse number of mirrors and b̂o is the primary diffraction order of
interest.

To map the output angles to pupil coordinates, we suppose the optical axis of the lens L6 is
described by the unit vector p̂. To write the frequency in pupil coordinates, we must project the
unit vectors b̂(f) on the plane orthogonal to p̂. To achieve this, we construct an orthonormal

coordinate system defined by p̂, x̂p = (pz, 0,−px)/
√

p2
x + p2

z and ŷp = p̂ × x̂p. Then the

diffracted order positions in pupil coordinates are given by x̂p · b̂(f) and ŷp · b̂(f).
Finally, the camera coordinates are related to the pupil coordinates by an affine transformation
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with no shear 
xc(f)

yc(f)

1

 = M


cos θc −ε sin θc cx

sin θc ε cos θc cy

0 0 1




x̂p · b̂(f)

ŷp · b̂(f)

1

 , (S29)

where ε = ±1 if the camera coordinates are not inverted (inverted) relative to the pupil coordi-
nates and (cx, cy) is the center of the pupil in camera coordinates. The magnification is the ratio
of the lens focal length to the camera pixel size, M = fl/dc.

On the other hand, the intensities in the pupil can be obtained from eq. 4,

I(f) ∝ sinc2
[

A+

(
γ, â− b̂(f), n̂

)]
sinc2

[
A−

(
γ, â− b̂(f), n̂

)]
(S30)

A+ =


n2

x(1− cos γ) + cos γ

nxny(1− cos γ) + nz sin γ

nxnz(1− cos γ)− ny sin γ

 · (â− b̂
)

(S31)

A− =


nxny(1− cos γ)− nz sin γ

n2
y(1− cos γ) + cos γ

nynz(1− cos γ) + nx sin γ

 · (â− b̂
)

(S32)

where we know emphasize the dependence of A± on the mirror rotation angle γ and the rotation
axis n̂, and provide expressions for the A’s for arbitrary n̂. In the main text, assume n̂ =

(1, 1, 0)/
√

2.
This provides a complete model of DMD diffraction. Now, we take wavelength λi using

diffraction orders (ni,−ni), some of which rely on “on” mirror angles γon and some which rely
on the “off” mirror angles γoff. Three sets of parameters must be determined: those related
to the beam angles {bx(λi), by(λi), λi}, the pupil mapping {M, θc, px, py, cx, cy}, and the DMD
parameters {θn, dx, dy, wx, wy, γon, γoff}. Here θn parameterizes the in-plane rotation of the DMD
mirror rotation axis n̂, as we suppose nz = 0. These are supplemented by the known values
ηi = ±1 if the diffraction of interest comes from the “on” or “off” mirror state.

Many of these parameters are known to a reasonable degree of accuracy, but to find the best
match between this model and the experimental data we perform a non-linear least squares fit
using the cost function

C = ∑
f ,i

α
(
[xc(f)− xe

c(f)]
2 + [yc(f)− ye

c(f)]
2
)

+

(
Ie(f)
Ie(0)

/
∣∣∣∣ E(f)

E(0)

∣∣∣∣2 − sinc2
[

A+

(
γi, â− b̂i(f), n̂

)]
sinc2

[
A−

(
γi, â− b̂i(f), n̂

)])2

(S33)

where γi = γon/off for ηi = ±1. Here the E(f) are the predictions for the diffracted order strengths
given by eq. 11. The parameter α weights the relative contributions of the position and intensity
data and is set empirically to 1× 10−3, a value that achieves a reasonable balance between the
position and amplitude cost functions. Changing α by an order of magnitude has a weak effect
on the obtained parameter values.

Minimizing this cost function, we find excellent agreement between the theory and experimen-
tal results, shown in table S1. The high quality agreement between the experiment and theory
results validates the models presented in the main text.

Note that the pupil mapping model described here has important consequences for the diffrac-
tion pattern in the system Fourier plan. Due to the tilted DMD, the ±1 diffraction orders are not
perfectly symmetric about the center of the Fourier plane and are not perfectly colinear with the
0th order. This previously unconsidered effect changes the position of the diffraction orders by up
to ∼10 % compared with naive predictions and must be considered when designing high quality
Fourier masks.

8



4. DMD DIFFRACTION EFFICIENCY

The DMD, like all binary diffractive optics, has relatively low diffraction efficiency, which requires
use of high power lasers to illuminate a large FOV. Still, the blazed grating effect allows more
efficient coupling into a single diffraction order compared with ferroelectric LCoS SLM’s. We
expect the peak diffraction efficiency using the all “on” pattern is about 0.91, computed by
summing the sinc envelope for all allowed diffraction orders. This efficiency is reduced to
∼0.69 by reflections from the uncoated DMD window, the finite micromirror reflectivity, and
the micromirror fill factor. When the DMD displays the SIM pattern, we expect a fraction of
0.076× 0.92 = 0.070 of this power is diffracted into each of the f = ±fo orders, where the first
factor comes from the diffraction efficiency of the SIM pattern (i.e. eq. 11 in the main text), and the
second from the Blaze envelope. This implies an overall efficiency of ∼0.097. We confirm these
estimates in the experiment, where we measure an efficiency of 0.60 for the all “on” pattern using
Gaussian beams with small waists compared to the DMD size. Using our typical experimental
configuration, these efficiencies are further reduced by a factor of ∼2 because the beam overfills
the DMD aperture to create a more uniform illumination profile. In this configuration, we find
the efficiency is ∼0.3 for all “on” and ∼0.04 and for the two SIM beams.

The efficiency of the light transfer is further limited by polarization effects and the finite
efficiency of the polarization optics. Unpolarized light passing through the pizza polarizer
reduces the efficiency by another factor of 0.5, and the transmission efficiency of the polarizer
reduces it by 0.5–0.9, with lower transmission in the blue and higher in the red. Thus, the net
efficiency of the entire optical train is ∼0.01–0.02.

5. DMD ABERRATIONS
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Fig. S4. Experimental DMD aberration measurement. DMD aberration profile over a radius
of 3.44 mm, or 475 micromirrors. The DMD flatness is roughly λ/2 over this range, measured
at λ = 780 nm.

There is anecdotal evidence that DMD’s are not optically flat, leading to more aberrations and
limiting the utility of DMD’s compared with LCoS SLM’s. To experimentally characterize the
DMD flatness, we adopted the approach of [6]. We considered a circular region near the center of
our DMD with radius 3.44 mm, and used sets of patterns with two patches of active mirrors, each
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with radius 10 mirrors. Light diffracted from two spots interferes in the Fourier plane, and the
phase of the interference pattern contains information about the DMD aberrations. We utilized
spot patterns generated from SIM patterns with r1 = (−15, 26) and r2 = (−6, 6) and period 2.2
mirrors. We sampled the DMD at 1088 points, which required 5441 distinct DMD patterns. At
each point we imaged three patterns identical except for 2π/3 phase shifts of the sample patch
and two patterns with only one active spot for amplitude normalization. Our results are shown
in fig. S4, where we find that over this range the DMD flatness is roughly λ/2 at 780 nm. For this
measurement, we used a 780 nm laser coupled through a single mode optical fiber and diffracting
from the “off” DMD mirrors using the (−3, 3) diffraction order.

One source of the relative robustness of our system to DMD aberrations is the fact the DMD
is in a conjugate plane to the sample. Here, the structured light patterns are mostly sensitive to
local aberrations on the scale of one unit cell, while the DMD primarily has aberrations on the full
chip scale. This is the opposite case from [6], where the DMD was placed in a Fourier plane. They
found it necessary to correct for the DMD aberrations because local information from the imaging
plane is spread across the Fourier plane, and hence experiences the full aberration profile.

The main effect of DMD aberrations, as illustrated in Fig. 3 of the main text, is to broaden the
diffraction orders, but there are various other potential sources of diffraction order broadening.
DMD aberrations will be the most important limitation to system performance only when they
are the dominate source of broadening. Even in an ideal system, some broadening is expected
from the finite size of the DMD chip and the numerical aperture of the detection lenses. The
finite angle between the DMD normal and the optical axis results in a small amount of defocus
which will lead to broadening. Any deviations from a flat wavefront on the DMD will also
lead to broadening. A non-flat wavefront can be caused by either the DMD chip not being flat,
the window protecting the DMD not being flat, or the incident beam wavefront not being flat.
Incomplete temporal or spatial coherence of the light source will lead to a similar effect, due to
incomplete interference in the Fourier plane. For example, imaging the DMD with a completely
incoherent light source will not produce discrete diffraction orders in the Fourier plane.

In our system, the dominate source of broadening is most likely the limited spatial coherence of
the laser sources after coupling through the multimode fiber. For the measured DMD aberration
profile, we expect the diffraction order standard deviation is less than 50 µm, whereas we measure
diffraction orders of standard deviation ∼250 µm. Tests with single mode lasers show reduced
diffraction order size, supporting this claim.

We achieve high modulation contrast in our SIM patterns despite the measured DMD and laser
non-idealities.

6. MULTICOLOR PATTERN GENERATION ALGORITHM

wavelength r1 r2 P θ

465/473 nm (-3, 11) (3, 12) 6.05 15.26°

(-11, 3) (12, 3) 6.05 74.74°

(-13, -12) (12, 3) 5.93 132.71°

532 nm (-3, 11) (3, 15) 6.84 15.26°

(-11, 3) (15, 3) 6.84 74.74°

(-13, -12) (3, 12) 6.78 132.71°

635 nm (-5, 18) (-15, 24) 8.03 15.52°

(-18, 5) (-24, 15) 8.03 74.48°

(-11, -10) (15, 3) 7.87 132.27°

Table S2. Parameters of the DMD SIM patterns produced by the multicolor pattern generation
algorithm. Note that the 473 nm patterns are also used for the 465 nm laser in the experiment.

We developed an algorithm to identify multicolor SIM patterns for an arbitrary number of
wavelengths. The inputs to this algorithm are the approximate period of the desired SIM patterns,
P, at one wavelength, the number of different angles, na ≥ 3, the desired number of phases
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per pattern np and a set of wavelengths λi. The criteria the patterns must satisfy are (1) the
angles must be close to equally spaced by π/na, (2) the periods of patterns for different angles
must match to good precision, (3) no parasitic Fourier modes from one pattern should overlap
with the main frequency of another, and (4) patterns for different colors but the same angle
must pass through the same location in the Fourier plane, which implies P(λ1)λ1 = P(λ2)λ2.
Unlike previous implementations our pattern generation algorithm does not rely on exhaustive
generation of lattice vectors [7].

Given a period P and angle θ, an algorithm to generate a single pattern must produce r1,2 such
that k2 lies at angle θ and 1/|k2| = P. Further, the imposed form of r2 = (n, m)np constrains the
reciprocal lattice vectors

k1 =
1

mr1x − nr1y
(m,−n) (S34)

k2 =
1

np
(
mr1x − nr1y

) (r1y,−r1x
)

. (S35)

Since the direction of k1 is already fixed, our strategy is to choose 1/|k2| close to the desired
period P with the constraint that the components of r1 must be integers. We must match both the
angle and period of k2, i.e.

θ = arctan

(
− r1x

r1y

)
(S36)

P = 1/|k2| = np [n cos(θ) + m sin(θ)] (S37)

Our full algorithm generates the complete set of na × np patterns at each wavelength. We first
describe the algorithm for generating a set of SIM patterns for one wavelength, and then discuss
the generalization to multiple wavelengths. We begin by selecting a desired period, number
of SIM angles na, and number of phase shifts np. Then we generate a list of possible angles
for integers n, m < M using eq. S37. For each n, m and fixed P, eq. S37 can be rewritten as a
quadratic equation in x = cos θ. From this set of available angles we select sequences of angles
θ1 < θ2 < ... < θna , where the distance between adjacent angles is within a certain tolerance of
the ideal spacing, π/na. We order our collection of sets of angles by the sizes of the r2 vectors,

C =
na

∑
i=1
|r2(θi)| . (S38)

This is a proxy for choosing a pattern set with well separated parasitic diffraction peaks, as large
r2 vectors result in small reciprocal vectors.

For a given sequence of angles, we choose candidates for the vectors r1. For each angle, we
generate r1 options by finding good rational approximations to tan θ = −r1x/r1y for r1x, r2x ∈
{0, ..., N}. N ≈ 60 is sufficient to match the desired θ to better than 1°, which in turn ensures that
the actual period P matches the desired period to within a few percent.

We take all rational approximation of the angle within a certain tolerance, and select the set
of r1 that maximize the distance between the SIM peaks and parasitic diffraction orders from
other patterns. This is equivalent to maximizing the distance between r2(θi), the frequency of
each SIM pattern, and all frequencies of each other pattern, which are given by sk1(θj) + tk2(θj).
This distance is given by

dmin = min
i 6=j

[
min
s,t∈Z

∣∣∣k2(θi)− sk1(θj)− tk2(θj)
∣∣∣] . (S39)

In practice, we only include reciprocal lattice vectors where the Fourier component of the pattern
is nonzero in our minimization. For each angle set, we select the r1(θi) by maximizing this
distance. We select the final pattern by evaluating this for several angle sets.

This procedure is easily extended to multiple colors. When generating patterns for multiple
wavelengths, we want to satisfy P(λ1)λ1 = P(λ2)λ2. In this case, we generate a set of angles
for all wavelengths and specify an angular tolerance δθ. For each angle, we check to ensure all
wavelengths have an allowed angle within δθ, and discard any angles that do not satisfy this
constraint. Then, we proceed with the angle minimization routine described above, now taking
the minimum pattern separation (scaled by the wavelength) over all colors. The results of this
algorithm for a pattern period of ∼6 mirrors at 473 nm, 532 nm, and 635 nm are shown in Fig. S2.
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7. SIM INSTRUMENT DESIGN
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Fig. S5. Schematic of microscope optical train. Components of the three-color DMD micro-
scope, corresponding to the parts described in table S3.

One objective of our design was to enable ease of use and to minimize effort needed adopt,
modify, and develop new imaging experiments using multiple coherent light sources and a DMD.
With this in mind, our multicolor SIM system was assembled entirely from commercially available
parts, easily machined or 3D printed parts, and standard optical components.

Coherent light was supplied by diode and diode-pumped solid-state (DPSS) lasers made by
Lasever. We utilized a blue laser (either 465 nm or 473 nm), green laser (532 nm), and red laser
(635 nm). We used the 473 nm laser (LSR473NL-150) for the two-color fixed cell imaging. We used
the 465 nm laser (OEM 470nm-2W) for the OTF measurement, the Argo-SIM slide resolution test,
the three-color live-cell imaging, and DMD model validation. Although the nominal wavelength
of the OEM 470nm-2W laser is 470 nm, we estimate its actual wavelength is∼465 nm based on the
transmitted fraction of light from a dichroic mirror with sharp edge in the blue. This wavelength
is confirmed by the model fit in Supplemental Note 3. The various colors were combined with
dichroic mirrors (M1-8, DM1, DM2) and coupled into a square-core multimode optical fiber with
core size 150 µm (MMF) using a reflective coupler (FC1). The fiber was shaken using an agitator
module [8] to reduce the influence of speckle.

The output from the fiber (FC2) was imaged onto the surface of a dual-axis voice-coil mirror
(VCM) using an f = 30 mm achromat (L1). A voice-coil mirror was used because of the large
mirror area (15 mm) compared to standard available galvonometer mirrors. The surface of the

12



Table S3. Optical elements

Component Supplier Part number Description

Blue laser Lasever LSR473NL-150

Blue laser Lasever OEM 470nm-2W actual wavelength ∼465 nm

Green laser Lasever LSR532NL-500

Green laser Lasever LSR532H-2W

Red laser Lasever LSR635-500

M1-M13 Thorlabs BB1-E02 / BB2-E02

DM1 Semrock LM01-552-25

ExF Semrock LF405-488-532-635-B-OMF

DM2 Semrock LM01-480-25

FC1 Thorlabs RC02FC-P01

MMF Thorlabs M103L05

Fiber shaker Custom — Ref [8]

FC2 Thorlabs SM1FC

L1 Thorlabs AC254-30-A-ML

VCM Optotune MR-15-30

L2 Thorlabs CLS-SL

L3 Thorlabs AC508-400-A-ML

L4 Thorlabs AC254-075-AB-ML

L5 Thorlabs AC508-500-A-ML

DMD Texas Instruments DLP Light Crafter 6500, DLP6500FYE

L6 Nikon MXA20696

FM Custom — aluminum foil

6× ∼1 mm diameter holes

POL Codixx colorPol vis 500 BC4 CW01 six element “pizza” polarizer

DM3 Chroma zt473/532/633rdc-uf3

L7 Thorlabs AC508-400-A-ML

L8 Thorlabs AC508-300-A-ML

DM4 Chroma zt473/532/633rdc-uf3

EmF Semrock LF405-488-532-635-B-OMF

EmF Chroma ZET457NF

OBJ Olympus UPlanFL N 100x, na = 1.3

Objective piezo Mad City Labs Nano F-200S

Sample stage Mad City Labs MicroDrive MCL-µD1803

L9 Olympus SWLTU-C

CAM Hamamatsu Orca Flash4.0 v2 C11440
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voice-coil mirror was imaged onto a DMD using a scan lens (L2) and an f = 400 mm achromat
(L3). The DMD was imaged onto the sample plane using a series of two 4 f imaging systems. The
first imaging system was formed by a tube lens (L6) and an f = 400 mm achromat (L7). After
passing through the tube lens, the various SIM orders were linearly polarized in the azimuthal
direction using a segmented (“pizza”) polarizer placed in the Fourier plane (POL), and unwanted
diffraction orders were removed with a home built aluminum foil Fourier mask mounted on a
lens tube (FM). The alignment of both is critical, and so we mounted them on XY-stages (Thorlabs,
CXYZ-1 and Thorlabs, CXY2). The second imaging system was formed by an f = 300 mm
achromat (L8) and the objective lens (OBJ). Before passing through the objective, the incoming
light was filtered and reflected off a dichroic mirror (DM4). The emitted fluorescence light passed
through the dichroic mirror and additional filters (DM4, EmF) and was imaged onto the camera
(CAM) using a tube lens (L9). To improve SIM interference contrast, we use two matched dichroic
mirrors (DM3, DM4) placed at a right angle to each other in the system. This is intended to
counteract the differential phase shift of a single dichroic on the s- and p-polarization components
of the SIM excitation light [7]. The microscope body was an Olympus IX71 with the factory
excitation paths and sample stages removed. 3D sample manipulation was achieved using a
motorized XY-stage (Sample stage) and a piezo Z-stage (Objective piezo).

Our goal for ease of use extends to the control and reconstruction software. We created a
control scheme that runs underneath the open-source project Micromanager 2.0 Gamma [9]
and used a low-cost digital triggering device (Advanced Research Consulting Triggerscope
3B). The experiment was controlled using a desktop computer (Lenovo, ThinkServer TS140)
running Microsoft Windows 10 Pro with the software Micro Manager 2.0 Gamma through
the BeanShell scripting interface. Users set up multi-dimensional acquisitions as normal in
Micromanager 2.0 Gamma and then ran our custom script to execute SIM imaging. This custom
script bypassed the standard Micromanager acquisition engine. Instead, we only utilized the
Micromanager ring buffer to acquire frames from the camera and the rest of the acquisition is
hardware controlled. TTL triggering of the DMD and lasers as well as analog control of the voice
coil mirror and objective piezo was accomplished with microsecond timing using the Arduino
Due based Triggerscope with custom firmware. The DMD was controlled over USB using custom
Python software. The SIM patterns were preloaded on the DMD firmware using the Texas
Instruments DLP LightCrafter 6500 and 9000 GUI 4.0.1. We hope future development in this area
continues to push towards making high-speed, deterministic hardware triggered microscopy
widely available [10].

All instrument control code is available on GitHub (Code 1 [11]).

8. SIM MODULATION CONTRAST

We assess the modulation contrast achieved in our experiment by collecting SIM images of
diffraction limited beads on a coverslip. We automatically identify beads, and fit them to Gaussian
point spread functions to extract their amplitude. Let Aij be the amplitude extract for a given
bead at angle index i and phase index j. Then the modulation depth of the pattern at this position
and angle is

mi =

√
2

3

√
(Ai1 − Ai2)2 + (Ai2 − Ai3)2 + (Ai3 − Ai1)2/(∑

j
Aij/3). (S40)

We typically work with beads with R = 50 nm for 465 nm and 532 nm or R = 100 nm for
635 nm, which are a substantial portion of the diffraction limit. This modifies the observed
modulation depth. To correct for finite bead size, we assume a spherical bead with radius R. For a
given SIM pattern with frequency f the total signal from one diffraction-limited bead is given by

A(φ, R, f ) =
∫

r<R

1
2
[1 + m cos (2π f x + φ)] dr3/V (S41)

=
∫ R

−R
π
(

R2 − x2
) 1

2
[1 + m cos (2π f x + φ)] dx/V (S42)

= 1 + m
[

3
u3 (sin u− u cos u)

]
cos φ (S43)

where u = 2πR f and V = 4
3 πR3.
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So we see the only effect of the finite size of the bead is to modify the measured modulation
depth. Thus, dividing the modulation depth obtained from eq. S40 by the expression in brackets
in eq. S43 yields the true modulation depth.

For R = 50 nm beads near 465 nm and 532 nm, this is a ∼10 % effect. For R = 100 nm beads at
635 nm, this is a ∼30 % effect. Typical average modulation contrasts obtained over hundreds of
beads are 0.5, 0.7, and 0.8 for 465 nm, 532 nm, and 635 nm.

9. EFFECT OF DMD TILT

In our setup, the DMD normal is tilted about θobj = 21.2° from the optical axis. This may introduce
a spatially varying focal shift across the microscope field of view. The imaging system formed
by lenses L6-L8 and the objective images this tilted plane onto the sample plane with a lateral
magnification of Ml = 0.012. The axial magnification is given by Ma = ni M2

l = 0.000 216, where
ni = 1.5 is the index refraction of the immersion oil. This implies (Scheimpflug principle) that the
tilt angle in the imaging plane is

θim = arctan
[

Ma

Ml
tan θobj

]
, (S44)

which in our system is 0.4°.
The image of the DMD thus changes axial position by at most 0.7 µm across our field of view,

which is similar to the detection optical system depth of focus, d = λni
NA2 = 0.56 µm at λ = 635 nm.

However, the depth of focus of the detection system is not the relevant parameter. This should
actually be compared against the depth of focus of SIM pattern. Due to the coherent nature of the
imaging, this may be considerably larger than for an incoherent imaging system.

It would be desirable to arrange the DMD so that its face were normal to the optical axis, how-
ever such a configuration cannot be achieved for a generic wavelength. Among the wavelength
considered here, fig. S2 demonstrates this would only be approximately possible for 532 nm.

10. SAMPLE PREPARATION

A. Commercial samples for instrument characterization
Fluorescent DNA origami with localized fluorophores separated by 120 nm were used to quantify
the initial alignment, point spread function (PSF), and SIM performance (Gattaquant DNA Nan-
otechnologies STED 120R). Additional calibration was done during alignment using multicolor
fluorescent microspheres (Thermo Fisher T14792). A fluorescent slide with patterns intended
to evaluate instrument resolution was used to characterized and fine tune SIM performance
(Argolight Argo-SIM). A commercial slide with bovine pulmonary arotic endothelial (BPAE) cells
labeled for nuclei (DAPI), F-actin (Phalloidin - Alexa488), and mitochondria (MitoTracker Red
CMXRos) was used to evaluate and fine tune initial multiple wavelength performance (Thermo
Fisher F36924).

B. Live adenocarcinoma epithelial cells
MDA-MB-231, human breast adenocarcinoma, cells (ATCC HTB-26) were cultured on 50 mm
diameter #1.5 glass bottomed cell culture dishes (World Precision Instrument, FD5040100) at 37 °C
in L-15 Medium (ATCC, 30-2008) with 10 % FBS (ATCC, 30-2020) and 5 % CO2 for a minimum
of 24-36 hours to allow for adherence and acclimation. Live cells were then stained for 30 min
at 37 °C in 5 mL L-15 medium + 10 % FBS with 100 nM MitoTracker Green FM, 2x CellMask
Actin Orange Tracking Stain (Invitrogen, 2212429) and 100 nM LysoTracker Deep Red (Invitrogen,
L12492). Stain and medium were aspirated off and replaced with 1 mL–2 mL fresh L-15 + 10 %
FBS medium. Stained cells were maintained for a short period of time in a 37 °C incubator until
imaging.

11. SIM RECONSTRUCTION

To mathematically express the image data obtained from a single raw SIM image with pattern
having spatial frequency fθ , angle θ, and phase φ, we use the following model

Dθ,φ(r) =
[

Pθ,φ(r)O(r)
]
⊗ h(r) + Nθ,φ (S45)

Pθ,φ = Aθφ [1 + mθ cos (2πr · fθ + φ)] , (S46)
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where the Aθφ are the amplitudes of the various patterns, the mθ are the pattern modulation
depths (which approach 1 in the ideal case), the Nθ,φ are the measurement noise for each image,
and h is the (intensity) point-spread function of the detection imaging system.

In 2D SIM, 3 angles and 3 phases is sufficient to reconstruct the data naively. In this case, we
can use the form of Pθ,φ to simplify the forward model (eq. S45), if we neglect the noise terms. We
find 

Dθ,φ1 (f)

Dθ,φ2 (f)

Dθ,φ3 (f)

 =


Aφ1 0 0

0 Aφ2 0

0 0 Aφ3




1 1
2 ei(φ1−φ

g
θ ) 1

2 e−i(φ1−φ
g
θ )

1 1
2 ei(φ2−φ

g
θ ) 1

2 e−i(φ2−φ
g
θ )

1 1
2 ei(φ3−φ

g
θ ) 1

2 e−i(φ3−φ
g
θ )



×


1 0 0

0 mθeiφg
θ 0

0 0 mθse−iφg
θ




O(f)h(f)

O(f− fθ)h(f)

O(f + fθ)h(f)

 , (S47)

where we have factored out the modulation depth and a global phase offset φ
g
θ to emphasize that

we are free to regard these quantities as part of the transformation matrix or as part of object
vector. From the latter point of view, only the phase differences are relevant for the transformation
matrix.

To reconstruct the object O(f) We take advantage of the known DMD patterns and the calibrated
affine transformation between the DMD and camera planes to estimate the expected SIM patterns.
We then estimate these using an optimization routine which determines the best pattern followed
by independent routines to estimate the phase and modulation depth similar to [12].

Prior to parameter estimation, we preprocess the data by removing the camera background,
estimated from the image histogram. We correct for intensity deviations between different phase
images at each angle by matching the histograms using the scikit-image match_histograms
function. This correction reduces reconstruction artifacts due to power fluctuations of our
multimode laser sources.

Our conventional parameter estimation approach is similar to that described in [12]. We use
the known affine transformation from the DMD to camera space [13] to select a search region.
We find an initial guess by taking the maximum of the cross correlation on a discrete set of
points produced by a fast Fourier transform. We refine this selection, optimizing over continuous
frequencies using the Fourier shift theorem. The phase and (optionally) amplitudes are estimated
together using the correlation minimization method of Wicker [14]. To obtain the modulation
depth, we first fit the power spectrum of the sample to an empirical power law form. Then we
fit the region near the SIM peak to the same power law, but a different scaling constant. This
constant is the modulation depth.

Once the SIM pattern parameters are determined, we invert eq. S47, obtaining
Iθ,0(f)

mθe−iφg
θ Iθ,1(f)

mθeiφg
θ Iθ,−1(f)

 = M−1


Dθ,φ1 (f)

Dθ,φ2 (f)

Dθ,φ3 (f)

 , (S48)

where the Iε(f) are essentially the O(f− εfθ)h(f) up to the influence of noise. Before obtaining
the D(f) from D(r) from a fast Fourier transform, we decompose D(r) into a smooth and periodic
part [15], and keep the periodic part. This is an alternative to multiplying D(r) by an apodization
function.

We include a global phase factor in eq. S48, as in general there will be some error in our phase
determination. We determine and correct this factor before the images are combined. The phase
factor can be estimated based on the fact |Iθ(f)| should be real. Therefore, after shifting the
components to the proper positions in Fourier space, we compute

φ
g
θ = −angle

(
∑
f
Tfθ

[
mθe−iφg

θ Iθ,1(f)
]

I∗θ,0(f)

)
(S49)

Finally, we reconstruct the object using a combination of Wiener deconvolution filters and
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weighted averaging

O(f) = ∑
θ,ε

[
wθ,ε(f + εfθ)

∑θ,ε wθ,ε(f + εfθ) + η

]
eiεφ

g
θ Tεfθ

 h∗(f)

|h(f)|2
(

1 + 1
wθ,ε(f)

) Iθ,ε(f)

 A(f), (S50)

where ε ∈ {1, 0,−1} and the weight factors are the signal-to-noise ratio, which is given by

wθ,0(f) = |h(f)|2 Sθ(f)
Nθ

(S51)

wθ,ε=±1(f) = m2
θ |h(f)|

2 Sθ(f− εfθ)

Nθ
. (S52)

Here A is an apodization function, and η > 0 is a Wiener filter parameter that attenuates frequency
points with low total weight. Tfo g(f) = g(f + fo) is the Fourier translation operator. The first
bracketed term represents a weighted average, while the second is a Wiener filter deconvolution.

The signal-to-noise ratio is modeled using the phenomenological approach from [12]. We
assume the noise is white, and estimate the noise power by averaging the power spectral density
beyond the optical transfer function cutoff frequency,

Nθ,ε =
∫
|f|> fmax

∣∣Iθ,ε(f)
∣∣2 df/

∫
|f|> fmax

1 df. (S53)

We model the signal power spectral density as a power law, which is appropriate for many
biological samples

Sθ(f) = A2|f|−2α. (S54)

We restrict 0 ≤ α ≤ 1.25, which prevents observed bias towards large exponents in low SNR data.

12. COMPARISON OF SIM RECONSTRUCTION WITH FAIRSIM

A B C

SIM 20 μm

A B C

FairSIM

A B CA B C

0 3 6 9

A B C

Displacement (μm)

SIM
FairSIM

Fig. S6. Comparison of reconstruction code with FairSIM. A. SIM-SR reconstructions using
our reconstruction code (top) and FairSIM (bottom) for the in-focus slice of the BPAE cell im-
ages shown in Fig. 6 in the main text. The line cut is illustrated by the semitransparent white
line. B. Power spectral density of the images in A. C. Line cuts through our SIM-SR reconstruc-
tion (black) and the FairSIM reconstruction (blue). Each trace is normalized to its peak value.
The two reconstruction techniques produce similar results.

To validate our SIM reconstruction algorithm we compare our results with FairSIM [16], a
SIM reconstruction program written in Java which has been validated and is commonly used to
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reconstruct SIM data [16]. We compare reconstructions of in-focus actin filaments imaged using
the 473 nm channel, which are presented in the main text Fig. 6. Prior to performing the FairSIM
reconstruction, we preprocess the raw SIM images using the histogram matching procedure
described in Supplemental Note 11. We allow FairSIM to generate the OTF using na = 1.3, and
attenuation factor a = 0.3. We perform the default FairSIM parameter finding routine, and the
SIM frequencies it obtains agree with the expected values.

We find our algorithm and FairSIM produce similar reconstructions, each showing similar
increase in resolution and corresponding narrowing of filament width (Fig. S6). Because FairSIM
uses a different normalization for their SR-SIM data, we first divide the line cut data by the
peak value to allow easy comparison. All major features in the line cuts shown in Fig. S6C are
present in both, although there are minor differences in smaller features. We also compare the
resolution enhancements for the two approaches based on decorrelation analysis. We find that
our reconstruction results in an enhancement of 1.54, while theirs yields 1.75 Both the differences
in small features and in measured resolution enhancements are most likely due to the different
approaches to Wiener filtering used in the two algorithms. These filters have different roll-off
characteristics, resulting in different attenuation of high frequency SIM information. Furthermore,
our algorithm applies a weighted averaging step which accounts for slightly different SNR’s in
the SIM images taken at different pattern angles. This effect is visible in the top panel of Fig. S6B,
where the frequency information coming from the angle from the upper left to lower right corner
is stronger than the other angles. In our reconstruction we use the experimental OTF, and in
FairSIM we use their default OTF model. The close agreement in the reconstructed images despite
these various implementation differences validates our approach.

13. SIM RECONSTRUCTION OF SYNTHETIC DATA

To further characterize our SIM algorithm and to assess the importance of using the experimentally
obtained OTF versus the ideal model, we consider a synthetic filamentous image with features
similar to microtubules. Further, this approach allows us to perform reconstruction at a variety
of signal-to-noise ratios. This is necessary to fully characterize the SIM reconstruction, as the
maximum attainable resolution depends strongly on the SNR value.

To create a synthetic image, we first generate a ground truth image on an oversampled pixel
grid. Next, we determine the fluorescence intensity by multiplying this with an illumination
pattern and convolving with the point-spread function (PSF) generated from the experimental
OTF. Then, we bin the oversampled grid to match the ∼60 nm pixel size in our imaging system.
We normalize the image so that it has a certain peak photon number, and then we add Poisson
noise to each pixel. Next we convert the pixels to camera counts by multiplying by a gain
factor of g = 2 adu/e and adding an offset of 100 adu, and model camera readout noise by
adding Gaussian noise with standard deviation of σ = 4 adu to each pixel independently. This
corresponds to noise of 2 e, similar to the measured rms read noise of our sCMOS camera. We
repeat this procedure for all phases and angles to produce synthetic raw SIM data. Finally, we
apply the SIM reconstruction algorithm on this simulated image. For each image, we estimate the
peak signal-to-noise as

SNR =
gpmax√

g2 pmax + σ2
, (S55)

where pmax is the peak average photon number incident on any pixel.
To generate the synthetic microtubule images, we first create a ground truth image of 79

one-pixel thick lines representing microtubules on a 10 nm× 10 nm pixel grid with full size
20.46 µm× 20.46 µm. The lines are generated from a filament network file provided by Super
Resolution Simulation (SuReSim) [17]. For simplicity, we ignore the z-coordinate and assume
the microtubules are all in the same plane. We illustrate a 6 µm× 6 µm portion of the ground
truth, simulated SIM image for one angle and phase, and SIM reconstruction in Fig. S7A, B,
and C respectively. We assess the SIM algorithm performance by looking at a line cut through
the reconstructed data near a crossing between two microtubules, where the microtubules are
separated by 110 nm (Fig. S7).

We find that the SIM reconstruction using the experimental OTF can distinguish the closely
spaced microtubules for sufficiently large SNR, but the reconstruction using the ideal OTF cannot
(Fig. S7E-H). The similarity between Fig. S7G and H indicates that the reconstruction quality of
these two images is no longer limited by SNR. The lower resolution of the ideal OTF reconstruction
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is expected because the Wiener deconvolution does not correctly reweight the high frequency
information in Fourier space. This demonstrates that using an experimentally determined OTF
can provide quantitative and qualitative improvement over the ideal OTF.
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Fig. S7. SIM Reconstruction of synthetic microtubules. A. Ground truth image. Pixels are
10 nm× 10 nm, and the ground truth structures have width of 10 nm. The white line illustrates
the location of the line cuts shown in E.-H. B. A simulated SIM image with the same signal-to-
noise ratio as H. C. SIM reconstruction using the experimental OTF for the same SNR as H. D.
Optical transfer function used to generate the synthetic SIM images (purple) and ideal optical
transfer function for na = 1.3 and λ = 520 nm (yellow). E. Line cut showing one isolated
microtubule (left peak) and two microtubules near a crossing (right peak). The ground truth
is shown in black, the SIM reconstruction using the experimental OTF is shown in purple, and
the reconstruction using the ideal OTF is shown in yellow. The peak photon number per pixel
is ∼4000 photons, and peak signal-to-noise ratio is ∼60. F. As in D. but with SNR ∼200 G. SNR
∼650. H. SNR ∼2000.

14. OTF MEASUREMENT TECHNIQUE

The forward model for intensity at the imaging plane is the convolution of the electric field
predicted by the DMD forward model band limited by the excitation imaging system optical
transfer function. The projected intensity components are given by the autocorrelation of this
signal, and the final imaged intensity is additionally blurred by the detection system OTF, H(f)

I(f) = H(f)∑
s

ê(s)E(s) · ê(s− f)E∗(s− f) circ
(
|s|

fmax

)
circ

(
|s− f|

fmax

)
(S56)

= H(f)∑
s

P̃(s)P̃∗(s− f)ê(s) · ê(s− f) HDMD(s)H∗DMD(s− f)

× circ
(
|s|

fmax

)
circ

(
|s− f|

fmax

)
, (S57)

where f are restricted to the reciprocal lattice vectors of the projected pattern and the P(f) can be
obtained from eq. 4. When working with the 473 nm excitation, the corrections from HDMD are
< 10 % out to the band limit. We neglect possible aberrations in the illumination pupil function,
however these could be included in systems where they are relevant. The unit vectors ê(s)
describe the polarization of the light after diffraction by the imaging system. This equation does
not include the typical cos−1/2 θ apodization factor that appears in the pupil of a system obeying
the Abbe sine condition [18], due to the fact that this is a discrete sum and not an integral.
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Neglecting HDMD, we have

I(f) ≈ H(f)

[
O(f)⊗∑

s
P̃(s)P̃∗(s− f)ê(s) · ê(s− f) circ

(
|s|

fmax

)
circ

(
|s− f|

fmax

)]
(S58)

= H(f)

[
O(f)⊗∑

i
m(fi)eiφ(fi)δ (f− fi)

]
(S59)

= ∑
i

H(fi)m(fi)eiφ(fi)O (f− fi) . (S60)

If we assume the object is perfectly uniform, this reduces to

I(fi) = ∑
i

H(fi)m(fi)eiφ(fi)δ(f− fi) (S61)

H(fi) =
I(fi)

m(fi)eiφ(fi)
, (S62)

as given by eq. 13 in the main text.
To evaluate the quantities m(fi), we must perform the sum above over the known Fourier

components of the DMD pattern, and additionally evaluate the polarization vectors. We suppose
the ẑ axis coincides with the optical axis, and define unit vectors and input polarization vectors
by

êp = (cos φ, sin φ, 0) (S63)

ês = (− sin φ, cos φ, 0) (S64)

êin = (cos φo, sin φo, 0) . (S65)

After diffraction by the optical system, a ray initially incident parallel to the optical axis at
azimuthal position φ converges towards the focal point and the polarization vector is modified
[19]

êout(φ, θ, φo) =
(
êp · êin

)
êr + (ês · êin) ês (S66)

êr = (cos φ cos θ, sin φ cos θ, sin θ) . (S67)

In this measurement, we work with unpolarized light and hence we must average over the input
polarization

1
2π

∫ 2π

0
dφo ê(φ1, θ1, φo) · ê(φ2, θ2, φo) =

1
2

cos2(φ1 − φ2) (1 + cos θ1 cos θ2)

+
1
2

cos(φ1 − φ2) sin θ1 sin θ2

+
1
2

sin2(φ1 − φ2) (cos θ1 + cos θ2) . (S68)

Finally, we must convert between the angular representation used here and the spatial frequency
representation discussed above. These are connected by

f =
n
λ
(cos φ sin θ, sin φ sin θ) (S69)

In practice, the object fluorescence distribution is not perfectly uniform. This introduces
correction terms caused by the same frequency mixing that SIM takes advantage of. The dominant
term comes from the object spectrum itself, H(f)O(f). We can obtain this term directly from a
widefield image and subtract it from the measured image. Performing higher order corrections
is more challenging, as this requires knowledge of m(fi)O(f − fi)H(f)eiφ(fi), which must be
obtained through deconvolution and frequency shifting, similar to SIM reconstruction. To avoid
these complications, we choose patterns where the higher order correction terms are unimportant.
These patterns typically have large separation between different Fourier peaks, corresponding to
large reciprocal lattice vectors and short periods. We find empirically that these corrections are
not important for periods less than ∼20 mirrors.
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Accounting for this effect and additionally dividing measured intensities by their DC compo-
nent to normalize laser power fluctuations, we estimate the OTF from

H(f) =
1

m(f)eiφ(f)

[
Iexp(f)
Iexp(0)

− Iwidefield(f)
Iwidefield(0)

]
. (S70)

In the measurement presented in the main text, we chose 360 SIM patterns at 12 approximately
equally spaced angles divided over 180° and 30 different periods equally spaced between 5–20
mirrors. Small deviations from equal spacing are necessary for the patterns to be commensurate
with the underlying DMD mirror lattice. We apply a similar algorithm to that described in
Supplemental Note 6 to determine these patterns.

To generate an OTF which is convenient to use with the SIM reconstruction algorithm, we
empirically model the measured optical-transfer function as a Lorentzian times the ideal optical
transfer function generated by the Airy point-spread function,

H(f) =
1

1 + γ2|f|2 × Ho(f). (S71)

The Lorentzian attenuates the optical-transfer function at high frequencies. This functional form is
convenient because it ensures that the OTF is unity at f = 0, zero at |f| = fmax and monotonically
decreasing. The parameter γ, which controls the width of the Lorentzian, is determined by a
non-linear least-squares fit.

This functional form assumes the OTF is azimuthally symmetric which is appropriate here
because we find no evidence for a strong angular dependence in the experimental data. Neverthe-
less, a non-parametric OTF may be determined by smoothing and interpolating the data shown
in Fig. 4F for systems which do not possess azimuthal symmetry.

Identifying the SIM peaks efficiently in the camera images requires careful calibration of
the affine transformation between the DMD and the camera coordinates, which we obtain by
projecting a test pattern of well-separated spots on the DMD, each generated by a single DMD
micromirror. We perform Gaussian fits to these spots in the camera image. Additional image
markers prevent ambiguities due to reflection and inversion. We then determine the affine
transformation using Gaussian elimination.

15. ADDITIONAL SIM EXPERIMENTAL TESTS

A. Gattaquant DNA origami nanorulers
We further assessed the SIM performance on a collection of diffraction limited objects, using
Gattaquant DNA origami nanorulers. The nanorulers contain two dye molecules separated by
a well defined distance of 120 nm. They are designed for characterizing STED systems, and we
did not expect to resolve this small spacing using the 680 nm fluorescence where the maximum
theoretical resolution is ∼130 nm. However, the very different characteristics of this sample
compared with the fixed cells allowed an independent test of our SIM approach. In these samples
the SIM peaks appear weaker due to the smaller DC spatial frequency component as compared
with cell samples. However, high frequency content is still efficiently mixed below the band
pass, resulting in a large SNR and high-quality reconstruction. As illustrated in Fig. S8, the
SIM images show significant narrowing of the individual origami as compared with both the
widefield images and deconvolved images. Decorrelation analysis estimates SIM provides a
factor of 1.64 resolution enhancement, close to the theoretical maximum based on our pattern
spacing. Performing Gaussian fits to ∼2500 DNA origami and comparing the resulting standard
deviations for the deconvolved and SIM images gives a similar resolution enhancement estimate
of 1.71.
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Fig. S8. SIM performance on diffraction limited spots. A. Widefield image for 635 nm (top)
and power spectrum (bottom). Images are shown in ADU. Circles illustrate the maximum
frequency where the ideal optical transfer function has support for λemission = 680 nm and
na = 1.3. B. Widefield image after Wiener filter deconvolution. C. SR-SIM images. D. One-
dimensional cuts plotted along the lines illustrated in A. We show the widefield image (black
line), Wiener deconvolved image (orange), and SR-SIM image (red).

B. Three-wavelength imaging of fixed cells

A B C

WF

10 μm

A B C

SIM

2 6 10

A B C

Displacement (μm)

WF
SIM

SIM

A B C

WF
SIM

SIM

A B C

WF
SIM

SIM

Fig. S9. Three-color imaging of fixed primary rat endothelial cells. A. Composite widefield
image with the 473 nm channel (cyan), 532 nm channel (yellow), and 635 nm channel (magenta).
Images are shown in ADU. White lines illustrate the position of the line cut shown in C. B. SR-
SIM images. C. One-dimensional cuts plotted along the lines illustrated in A. for 532 nm (top),
635 nm (middle), and 473 nm excitations. 473 nm and 532 nm channel line cuts correspond to
the upper line cut in A., and 635 nm to the lower cut.

We realized three-wavelength SIM using the 473 nm, 532 nm, and 635 nm channels to image
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β-actin, HIF, and FGF18 labeled with Alexa Fluor 488, Alexa Fluor 555, and Alexa Fluor 647 in
fixed primary rat endothelial cells. We have previously studied angiogenic signaling in primary
rat, sheep, and human endothelial cells using high-throughput multi-wavelength widefield
microscopy [20–22].

The SIM results (Fig. S9) show resolution enhancement in all three channels, with the en-
hancement in the details of the HIF distribution from the 532 nm channel appearing most visible
in Fig. S9C. Decorrelation analysis estimates the SIM images enhance the resolution over the
deconvolved images by by factors of ∼1.6, ∼1.5, and ∼1.65 for the 473 nm, 532 nm, and 635 nm
channels respectively.

Primary rat endothelial cells were isolated as previously described [22, 23]. After isolation, cells
were plated on glass chamber slides (Thermo Fisher, 177402), fixed using 4 % paraformaldehyde
(Electron Microscopy Sciences, 15710-S), and labeled using primary and secondary antibodies for
HIF (Primary, 1:250 dilution: Thermo Fisher PA1-184. Secondary, 1:500 dilution, Alexa Fluor 555:
Thermo Fisher A32794), β-actin (Primary, 1:1000 dilution: Thermo Fisher AM4302. Secondary,
1:500 dilution, Alexa Fluor 488: Thermo Fisher A-11001), and FGF18 (Primary, 1:250 dilution:
Santa Cruz SC-16830. Secondary, 1:500 dilution, Alexa Fluor 647: Thermo Fisher A32849)). After
labeling, slides were mounted with Slowfade Glass with DAPI (Thermo Fisher S36920) using
25 mm× 40 mm 1.5 coverslips (Thermo Fisher 24x40-1.5).
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